Skip to main content

[How to use GPT-4/BingChat for Drug Discovery or Other Research Development White Paper (w/ Prompt Engineering)]


Backgrounds

The motivation to write this white paper was inspired by an article in Hankyoreh on July 5 (Generative AI designs new drug in 46 days...enters phase 2 for the first time ever[1]which I read as a non-expert in the field of drug development. To summarize the content of the article, it is as follows.

A drug candidate designed using artificial intelligence (AI) by biotech company Insilico Medicine has entered Phase II clinical trials. The drug, a treatment for idiopathic pulmonary fibrosis, will be administered to 60 patients in China and the United States. Insilico developed the drug using a combination of generative AI and reinforcement learning, which cut drug development costs by a tenth and time by a third. The company currently has more than 30 AI drug development programs underway, three of which have entered clinical trials. This entry into Phase II clinical trials is considered a major milestone in the field of drug development using AI.

Based on this article, I tried to explain how generative AI (ChatGPT, BingChat) can be well utilized in drug discovery with an example of the process of applying prompt engineering techniques to derive concrete results step by step.

 

This course will help you understand why prompt engineering is necessary and how to apply it. It will also show you how we uncovered hidden prompt directives that are very useful in drug discovery.  

Here are the prompt directives (in the form of #hashtags) that we discovered while writing this paper: (*Note: The hashtag directives below should be run in BingChat rather than GPT-4 to achieve the desired results.')

  • #patent_search
  • #trend_analysis
  • #information_query
  • #information_detail
  • #scenario_write
  • #scenario_simulate
  • #content_generate
  • #expert_interview
  • #educational_content
  • #risk_assessment
  • There are many other

These hashtags are not only useful for drug discovery, but also for other research and development. We encourage you to apply these hashtag directives to a variety of research areasFor example, among the hashtags below, "#patent_search" is a command to search for patent information.

A drug discovery researcher can ask a question in BingChat with "#patent_search: rituxim"] or give a command with "Give me the latest patents for rituxim"]. However, there are differences between these two commands.

The '#patent_search: rituxim' command uses a hashtag to search for patent information. It searches for domestic and international patents with the keyword rituxim and provides information such as patent name, application number, filing date, inventor, and summary.

"Show me the latest patents for rituxim" is a typical question to retrieve patent information: it performs a web search with the keyword rituxim, finds patent-related sites or documents in the search results, and provides the information.

Drug discovery is an important field that improves human health and quality of life. However, drug development is an extremely difficult, time-consuming, and costly process. Drug candidates need to be discovered, validated for efficacy and safety, tested in clinical trials, and approved before they can be brought to market. There is a lot of failure and waste along the way, and the probability of success in drug development is very low.

To address these challenges, artificial intelligence (AI) technologies are increasingly being used in drug discovery. Generative AI, in particular, is an AI technology that generates new data by learning from existing data, and can be used to design drug candidates, predict their efficacy and safety, and even simulate clinical trial results. A typical example of generative AI used in drug discovery is the Generative Adversarial Network (GAN).  

Generative Adversarial Networks (GANs) and GPT-4 are both deep learning models, a branch of artificial intelligence, but they differ in their purpose and how they work. Both models can be utilized in drug discovery, but the way and context in which they are used is different.

1. Generative Adversarial Networks (GANs): GANs are generative models in which two neural networks, a generator and a discriminator, learn by competing with each other. The generator tries to create fake data that resembles real data, and the discriminator tries to determine whether the data created by the generator is real or fake. Through this competition, the generator gradually creates fake data that is indistinguishable from real data, which is then used to generate new images, speech, and more.

GANs  are often used in the molecular design phase of drug development. GANs can be used to generate new molecular structures, which can help find new drug candidates. A constructor creates a new molecule that is similar to a real molecule, and a discriminator determines how similar it is to the real molecule. In this way, GANs can be used to explore and generate new molecular structures in drug discovery.

2. GPT-4: GPT-4 is a model used in natural language processing (NLP) that focuses on understanding and generating textual data. GPT-4 can learn large amounts of text data to understand context, generate appropriate text for a given input, provide answers to questions, translate text, and more. GPT-4 is based on the Transformer architecture, which is designed to process all words in an input sentence simultaneously to better understand context. Natural language processing models like GPT-4  can be used in other aspects of drug discovery. For example, these models can be used to analyze and understand large amounts of medical text data. This can help analyze research findings, interpret clinical trial results, or search and summarize medical literature.

So, the main difference between GANs and GPT-4 is that GANs are used to generate different types of data, such as images and speech, while GPT-4 is primarily used to process and generate text data. Also, GANs learn by having two neural networks compete against each other, while GPT-4 learns by training a large amount of text data to understand context and generate text.

GANs and GPT-4 can be utilized in different ways at different stages of drug development. By leveraging their respective strengths, these two models can contribute to improving and accelerating the drug discovery process.

This paper describes the process of applying prompt engineering techniques to analyze how GPT-4 can be utilized in the drug discovery process.

 

In order to utilize generative AI for drug discovery, prompt engineering techniques are required. Prompt engineering is the art of providing an AI model with the right inputs (prompts) to achieve a desired outcome. Prompt engineering can help you increase the performance and efficiency of your AI model, tailor your AI model to your desired purpose, and reduce the limitations and risks of your AI model.

I am a non-expert in the drug discovery field. Based on my experience in general prompt engineering,I have been studying the process of how generative AI (ChatGPT, BingChat) can be utilized in drug development.


Much of the content in this whitepaper was generated by utilizing GPT-4 and BingChat as appropriate.


For more information, download the PDF file here 


-------------------------------------------

Published Book: Mastering ChatGPT-4 Prompt for Writers: (Author:Charly Choi)

Comments

Popular posts from this blog

Claude AI プロンプトエンジニアリング: 核心概念と実践方法

  Claude AI プロンプトエンジニアリング: 核心概念と実践方法 生成AIのためのプロンプトエンジニアリングは、生成AIとの効果的なインタラクションを通じて望ましい結果を得るためのプロセスです。 良いプロンプトエンジニアになるためには、次のような能力が必要です: 1.明確なコミュニケーション能力 。 例文: クロード、私は今、1つのブログポストを作成しているんだ。 テーマは「日常で簡単に実践できる環境保護の方法」だ。 ポストの構成は、序論-本論-結論で構成され、総文字数は1500文字前後で、読者に親しみやすくなるように、文体は堅苦しくなく、柔らかい感じに書いてくれ」。 プロンプトで記事のテーマ、構造、分量、文体などを具体的に明示することで、生成型AIが希望する方向に記事を生成できるよう、明確なガイドラインを提供しています。 2.反復作業をコツコツと行う意欲 。 例示: 最初のプロンプト - "クロード、私のために'春のピクニック'をテーマにした詩を書いてくれる?" 2番目のプロンプト - "詩の雰囲気をもっと軽快に変えて、青系で締めてくれる?" 3番目のプロンプト - "詩の3~4行目に、春のピクニックに行くときに聴きやすい音楽を推薦する内容を追加してくれる?" 同じテーマの詩を対象に、プロンプトを少しずつ修正しながら、生成型AIと繰り返しインタラクションすることで、ユーザーが望む方向に詩を完成させていきます。 3.プロンプトが間違っている可能性がある場合を考慮する能力 。 例: 「クロード、これから架空のインタビュー記事を書いてみよう。 架空の人物Aは「理想の職場の上司」に選ばれたんだ。 Aさんをインタビューしていると思って、Aさんが理想的な上司に選ばれた理由を5つくらいあげて記事を書いてくれ。 ただし、もし私が「男性」または「女性」と言わなかったら性別を言わないで、もしAさんの業種を言わなかったら、具体的な業種を書かないで自然に記事を書いてくれ。 プロンプトで曖昧になる可能性のある部分(性別、業種など)への配慮を事前に言及することで、プロンプトが意図しない方向に解釈される可能性を事前に遮断しています。 4.正直さ、ペルソナ、比喩の使用 。 例文: "クロード、私は今、大...

[Claude AIライティングのヒント】本を書く上で最も多く使ったプロンプトのテクニックを紹介

生成AIと協業して本を書く際に最も多く使ったプロンプトのテクニックを紹介します。この手法は、GPT-4、Claude 3 Opusの生成型AIで文章を書くときに最も多く使った手法の一つです。  単純なライティングから、複雑なライティングにも非常に有用な手法なので、紹介したいと思います。 以下の3段階(簡単、中程度、複雑)の例文を参考にしてください。 簡単なプロンプト例 次の 内容を500文字で要約 : [ 本文内容][本文の内容 以下の内容を 日本語に翻訳してください :[本文内容]. 次の データを分析してください : ["シートデータをコピーしてここに貼り付けます"]。 中難易度プロンプト例 次の記事を要約して ください:[ "原文のまま" ]。 次のガイドライン に従って作成してください: [ 2つのポジティブな変化と2つのネガティブな懸念をまとめてください。未来に関連して解決すべき課題2つをまとめ、原文のテーマを1つの文章で要約し、それを裏付ける重要な文章を文章から見つけてください ]. あなたはエッセイを専門とするライターです。 同じテーマの 次の2つの エッセイ(A)と(B)が あります 。 [(A).エッセイ、(B).エッセイ]の 比較分析をしてください 。 次の テーマについて500語のブログを書いてください:[気候変動が海洋生態系に与える影響] 次の要素を 含める必要があります: 海面上昇 、 海洋の酸性化、海洋生物多様性の減少][海面 上昇 、 海洋の酸性化、海洋生物多様性の減少 各セクションは 以下の 構造に従ってください: [問題の説明、具体的な例、潜在的な解決策】。] 結論では、今後の研究の方向性を示してください。 複雑なプロンプトの例 メール業務(例:プロジェクト延長依頼のメールなど) メールはビジネスコミュニケーションの重要な手段であり、効果的なメール作成と管理は業務効率を大幅に向上させることができます。構造化されたプロンプトを使用して、様々な状況に合わせたメールを素早く正確に作成することができます。 プロンプトの 例: " あなたは[会社名]の[役職]です。 次のよう な状況についてメールを書いてください: [....... 状況:[重要なプロジェクトの締め切り延長要請] 受信者:[プ...

[Mastering ChatGPT-4 Prompts for Writers]

T he Ultimate Guide to Unlocking Your Creativity and Boosting Your Writing Skills with ChatGPT-4] Introduction Chapter 1: The Age of the AI Writer and the Writing Revolution Chapter 2: Understanding Generative AI and Its Potential for Writers 2.1. Understanding ChatGPT-4 2.2. Role of prompts in ChatGPT-4 2.3. ChatGPT-4 for Writer Chapter 3: Mastering Prompts for Writing: A Comprehensive Guide 3.1 What is Prompt? 3.2. Basics for writing prompts 3.3 Creative uses of prompts 3.4. Tailoring prompts for different genres 3.5 Use prompts for book organization and ideas 3.6 Optimize prompts 3.7 Test and iterate on your prompt 3.8 Prompt Tips for novelist Chapter 4. Use Case:Write my business book 4.1. Create a book title. 4.2. Write a table of contents 4.3. Identify the main ideas in each chapter 4.4. Create an introduction 4.5. Create draft content for each chapter 4.6. Write a conclusion Chapter 5: Scalability and Future Prospects for Using ChatGPT-4 5.1 Possibilities for other content creat...